CSpace
(本次检索基于用户作品认领结果)

浏览/检索结果: 共39条,第1-10条 帮助

限定条件            
已选(0)清除 条数/页:   排序方式:
A Kalman-Filter-Incorporated Latent Factor Analysis Model for Temporally Dynamic Sparse Data 期刊论文
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 页码: 14
作者:  Yuan, Ye;  Luo, Xin;  Shang, Mingsheng;  Wang, Zidong
收藏  |  浏览/下载:78/0  |  提交时间:2022/08/22
Quality of service  Data models  Kalman filters  Estimation  Computational modeling  Web services  Heuristic algorithms  Alternating least squares (ALSs)  computational intelligence  data science  dynamic latent factor analysis (LFA)  dynamics  intelligent computing  Kalman filter  temporal pattern  Web service  
A Data-Characteristic-Aware Latent Factor Model for Web Services QoS Prediction 期刊论文
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 卷号: 34, 期号: 6, 页码: 2525-2538
作者:  Wu, Di;  Luo, Xin;  Shang, Mingsheng;  He, Yi;  Wang, Guoyin;  Wu, Xindong
收藏  |  浏览/下载:86/0  |  提交时间:2022/08/22
Web Service  quality-of-service  QoS  latent factor analysis  density peak  data-characteristic-aware  missing data  big data  topological neighborhood  noise data  service selection  data science  
A Multilayered-and-Randomized Latent Factor Model for High-Dimensional and Sparse Matrices 期刊论文
IEEE TRANSACTIONS ON BIG DATA, 2022, 卷号: 8, 期号: 3, 页码: 784-794
作者:  Yuan, Ye;  He, Qiang;  Luo, Xin;  Shang, Mingsheng
收藏  |  浏览/下载:93/0  |  提交时间:2022/08/22
Computational modeling  Sparse matrices  Big Data  Data models  Stochastic processes  Training  Software algorithms  Big data  latent factor analysis  generally multilayered structure  deep forest  multilayered extreme learning machine  randomized-learning  high-dimensional and sparse matrix  stochastic gradient descent  randomized model  
Large-Scale and Scalable Latent Factor Analysis via Distributed Alternative Stochastic Gradient Descent for Recommender Systems 期刊论文
IEEE TRANSACTIONS ON BIG DATA, 2022, 卷号: 8, 期号: 2, 页码: 420-431
作者:  Shi, Xiaoyu;  He, Qiang;  Luo, Xin;  Bai, Yanan;  Shang, Mingsheng
收藏  |  浏览/下载:88/0  |  提交时间:2022/08/22
Recommender systems  Training  Optimization  Big Data  Cloud computing  Computational modeling  Sparse matrices  Recommender system  latent factor analysis  high-dimensional and sparse matrices  alternative stochastic gradient descent  distributed computing  
A Posterior-Neighborhood-Regularized Latent Factor Model for Highly Accurate Web Service QoS Prediction 期刊论文
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 卷号: 15, 期号: 2, 页码: 793-805
作者:  Wu, Di;  He, Qiang;  Luo, Xin;  Shang, Mingsheng;  He, Yi;  Wang, Guoyin
收藏  |  浏览/下载:65/0  |  提交时间:2022/08/22
Web service  quality-of-service  latent factor analysis  posterior-neighborhood  regularization  cloud computing  big data  
Distributed Competition of Multi-Robot Coordination Under Variable and Switching Topologies 期刊论文
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2021, 页码: 12
作者:  Jin, Long;  Qi, Yimeng;  Luo, Xin;  Li, Shuai;  Shang, Mingsheng
收藏  |  浏览/下载:73/0  |  提交时间:2022/08/22
Robot kinematics  Robots  Topology  Multi-robot systems  Heuristic algorithms  Task analysis  Collaboration  Multi-robot coordination  winner-take-all  gradient neural network  distributed control  
A Deep Latent Factor Model for High-Dimensional and Sparse Matrices in Recommender Systems 期刊论文
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 7, 页码: 4285-4296
作者:  Wu, Di;  Luo, Xin;  Shang, Mingsheng;  He, Yi;  Wang, Guoyin;  Zhou, MengChu
收藏  |  浏览/下载:218/0  |  提交时间:2021/08/20
Big data  deep model  high-dimensional and sparse (HiDS) matrix  latent factor (LF) analysis  recommender system (RS)  
An Instance-Frequency-Weighted Regularization Scheme for Non-Negative Latent Factor Analysis on High-Dimensional and Sparse Data 期刊论文
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 6, 页码: 3522-3532
作者:  Luo, Xin;  Wang, Zidong;  Shang, Mingsheng
收藏  |  浏览/下载:91/0  |  提交时间:2021/08/20
High-dimensional and sparse (HiDS) data  industrial application  instance-frequency  non-negative latent factor analysis (NLFA)  recommender system  regularization  
An L-1-and-L-2-Norm-Oriented Latent Factor Model for Recommender Systems 期刊论文
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 页码: 14
作者:  Wu, Di;  Shang, Mingsheng;  Luo, Xin;  Wang, Zidong
收藏  |  浏览/下载:52/0  |  提交时间:2022/08/22
High-dimensional and sparse (HiDS) matrix  latent factor (LF) analysis  L-1 norm  L-2 norm  recommender system (RS)  
Algorithms of Unconstrained Non-Negative Latent Factor Analysis for Recommender Systems 期刊论文
IEEE TRANSACTIONS ON BIG DATA, 2021, 卷号: 7, 期号: 1, 页码: 227-240
作者:  Luo, Xin;  Zhou, Mengchu;  Li, Shuai;  Wu, Di;  Liu, Zhigang;  Shang, Mingsheng
收藏  |  浏览/下载:163/0  |  提交时间:2021/05/17
Data models  Training  Sparse matrices  Recommender systems  Computational modeling  Big Data  Scalability  Non-negative latent factor analysis  non-negativity  latent factor analysis  unconstrained optimization  high-dimensional and sparse matrix  collaborative filtering  recommender system  big data