CSpace  > 微纳制造与系统集成研究中心
Triethanolamine doped multilayer MoS2 field effect transistors
Ryu, Min-Yeul1; Jang, Ho-Kyun1; Lee, Kook Jin1; Piao, Mingxing2; Ko, Seung-Pil1; Shin, Minju1; Huh, Junghwan1; Kim, Gyu-Tae1
2017-05-28
摘要

Chemical doping has been investigated as an alternative method of conventional ion implantation for two-dimensional materials. We herein report chemically doped multilayer molybdenum disulfide (MoS2) field effect transistors (FETs) through n-type channel doping, wherein triethanolamine (TEOA) is used as an n-type dopant. As a result of the TEOA doping process, the electrical performances of multilayer MoS2 FETs were enhanced at room temperature. Extracted field effect mobility was estimated to be similar to 30 cm(2) V-1 s(-1) after the surface doping process, which is 10 times higher than that of the pristine device. Subthreshold swing and contact resistance were also improved after the TEOA doping process. The enhancement of the subthreshold swing was demonstrated by using an independent FET model. Furthermore, we found that the doping level can be effectively controlled by the heat treatment method. These results demonstrate a promising material system that is easily controlled with high performance, while elucidating the underlying mechanism of improved electrical properties by the doping effect in a multilayered scheme.

DOI10.1039/c7cp00589j
发表期刊PHYSICAL CHEMISTRY CHEMICAL PHYSICS
ISSN1463-9076
卷号19期号:20页码:13133-13139
收录类别SCI
WOS记录号WOS:000402072100056
语种英语