CSpace
Modeling and Optimization of Sensitivity and Creep for Multi-Component Sensing Materials
Bi, Gangping1,2,3; Xiao, Bowen1,3,4; Lin, Yuanchang1,3; Yan, Shaoqiu1,2,3; Tang, Ying1,2,3; He, Songxiying3; Shang, Mingsheng1; He, Guotian1,3
2023
摘要Pressure sensors urgently need high-performance sensing materials in order to be developed further. Sensitivity and creep are regarded as two key indices for assessing a sensor's performance. For the design and optimization of sensing materials, an accurate estimation of the impact of several parameters on sensitivity and creep is essential. In this study, sensitivity and creep were predicted using the response surface methodology (RSM) and support vector regression (SVR), respectively. The input parameters were the concentrations of nickel (Ni) particles, multiwalled carbon nanotubes (MWCNTs), and multilayer graphene (MLG), as well as the magnetic field intensity (B). According to statistical measures, the SVR model exhibited a greater level of predictability and accuracy. The non-dominated sorting genetic-II algorithm (NSGA-II) was used to generate the Pareto-optimal fronts, and decision-making was used to determine the final optimal solution. With these conditions, the optimized results revealed an improved performance compared to the earlier study, with an average sensitivity of 0.059 kPa(-1) in the pressure range of 0-16 kPa and a creep of 0.0325, which showed better sensitivity in a wider range compared to previous work. The theoretical sensitivity and creep were relatively similar to the actual values, with relative deviations of 0.317% and 0.307% after simulation and experimental verification. Future research for transducer performance optimization can make use of the provided methodology because it is representative.
关键词RSM SVR NSGA-II MWCNTs MLG Ni magnetic field sensitivity creep
DOI10.3390/nano13020298
发表期刊NANOMATERIALS
卷号13期号:2页码:21
通讯作者Lin, Yuanchang(lyc@cigit.ac.cn) ; He, Guotian(heguotian@cigit.ac.cn)
收录类别SCI
WOS记录号WOS:000927680700001
语种英语